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Abstract
PT -symmetric, non-relativistic quantum mechanical potentials are discussed
in two and three spatial dimensions. Conditions are formulated under which
these potentials are PT -symmetric and can be solved exactly by the separation
of the radial and angular variables. It is found that the angular variables play
an essential role in introducing non-Hermiticity via the imaginary potential
terms. A simple partially exactly solvable potential is used to demonstrate
various aspects of PT symmetry in both two and three dimensions. Possible
generalizations of the results are outlined.

PACS numbers: 03.65.Ge, 02.30.Gp, 11.30.Er

1. Introduction

Quantum mechanical Hamiltonians invariant under the simultaneous action of the P space and
T time inversion operations possess several unusual features. Despite being non-Hermitian,
the discrete energy spectrum of these PT -symmetric systems can be partly or completely
real [1]. Typically the transition from the fully real energy spectrum to the complex one
occurs when the non-Hermitian component of the Hamiltonian exceeds a certain critical limit,
and it can be interpreted as the spontaneous breakdown of PT symmetry in that the energy
eigenstates cease to be eigenstates of the PT operator. Another important feature of these
systems is that the orthogonality of the energy eigenstates and the time-independence of their
norm can be guaranteed if the inner product is redefined in a suitable way, 〈ψ |φ〉PT ≡ 〈ψ |Pφ〉,
however, the pseudo-norm defined this way turned out to have indefinite sign. Much effort has
been devoted to restoring the probabilistic interpretation of PT -symmetric [2], and in general,
pseudo-Hermitian [3] systems by constructing equivalent Hermitian Hamiltonians. For this
a positive definite metric operator had to be constructed, by which a consistent treatment of
physical operators (not only that of the Hamiltonian) could be done. This task has been carried
out recently by various systematic methods [4]. It is notable that the question of the consistent

1751-8113/07/150273+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK F273

http://dx.doi.org/10.1088/1751-8113/40/15/F02
mailto:levai@atomki.hu
http://stacks.iop.org/JPhysA/40/F273


F274 Fast Track Communication

description of non-Hermitian Hamiltonians in terms of a modified metric has been discussed
well before [5] the introduction of PT -symmetric quantum mechanics within the framework
of quasi-Hermiticity.

With only a few exceptions the study of PT -symmetric systems has been restricted to the
bound states of one-dimensional non-relativistic problems, where PT symmetry amounts to
the requirement V ∗(−x) = V (x) imposed on the potential. Recently, various generalizations
of this problem have been proposed, and the investigation of systems with scattering solutions
[6, 7], periodic structure [8–10], coupled channels [11], more particles [12] and relativistic
wave equations [13] has been started.

Here we propose another generalization by extending the study of PT -symmetric
problems to higher spatial dimensions. Some investigations focusing on specific aspects
of such PT -symmetric systems have been performed already: in [14] various 2- and
3-dimensional generalizations of the imaginary cubic potential have been discussed in
Cartesian coordinates, while [15] dealt with some cyclic potentials as the angular component
of potentials in d = 2. Motivated by the question to what extent the unusual features of
PT -symmetric systems persist in d > 1 dimensions, we perform systematic analysis of
potentials that can be solved exactly in polar coordinates for d = 2 and 3. Although this
task seems more complicated than the study of non-central real potentials [16, 17], one might
expect that the special constraints imposed on the potential function V (r) by PT symmetry
might facilitate the handling of this problem.

2. PT -symmetric Hamiltonians in various dimensions

Let us consider non-relativistic quantum mechanical potential problems with constant mass.
These are described by the Hamiltonian

H = p2

2m
+ V (r) = − h̄2

2m
� + V (r). (1)

The kinetic term is obviously PT -symmetric, so it is the potential term V (r) that decides
whether (1) is PT -symmetric or not. In what follows we formulate the PT symmetry
requirement in d = 2 and 3 dimensions using polar coordinates. Considering thatP : r → −r,
we obtain

V (ρ, ϕ) = V ∗(ρ, ϕ + π) (2)

for d = 2 and

V (r, θ, ϕ) = V ∗(r, π − θ, ϕ + π) (3)

for d = 3. It is obvious, that central potentials V (r) = V (|r|) ≡ V (r) can be PT -symmetric
only if they are real: V (r) = V ∗(r), so the angular variables play an essential role in introducing
an imaginary potential component.

Although real central potentials are uninteresting from the point of view of PT
symmetry, it is worthwhile to inspect the transformation property of the angular component
of the corresponding wavefunctions, i.e. that of the exponential and spherical harmonic
functions. It turns out that these get transformed in a characteristic way: PT exp(imϕ) =
(−1)m exp(−imϕ),PT Ylm(θ, ϕ) = (−1)l+mYl−m(θ,−ϕ), therefore it is reasonable to expect
that the angular wavefunctions of thePT -symmetric problems will appear as the generalization
of these functions.

In what follows we focus on two- and three-dimensional PT -symmetric problems and
attempt to find potentials that are exactly solvable by means of the separation of the variables.
For the sake of simplicity we use the units h̄ = 2m = 1.
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2.1. The case of d = 2

The Schrödinger equation corresponding to (1) is

1

ρ

∂

∂ρ

(
ρ

∂ψ

∂ρ

)
+

1

ρ2

∂2ψ

∂ϕ2
− V (ρ, ϕ)ψ + Eψ = 0. (4)

Factorizing ψ ≡ ψ(ρ, ϕ) as

ψ(ρ, ϕ) = ρ−1/2φ(ρ)τ(ϕ) (5)

we obtain the equation

φ′′τ +
1

ρ2
φτ ′′ −

(
V (ρ, ϕ) − 1

4ρ2
− E

)
φτ = 0, (6)

where prime denotes derivation with respect to the corresponding single variable. Let us
assume that τ(ϕ) satisfies the equation

τ ′′ = (K(ϕ) − k)τ (7)

such that

V (ρ, ϕ) = V0(ρ) +
1

ρ2
K(ϕ) (8)

holds. Then (2) requires V0(ρ) to be real and K(ϕ)PT -symmetric

K∗(ϕ + π) = K(ϕ). (9)

In this case a radial Schrödinger equation can be separated as

−φ′′ +

[
V0(ρ) +

(
k − 1

4

)
1

ρ2

]
φ − Eφ = 0. (10)

Equation (10) is similar to the radial Schrödinger equation obtained for real potentials, and
its solution can be done similarly. Exact solutions are known for the harmonic oscillator,
Coulomb and square well for arbitrary value of k, while for k = 1/4, (10) is solvable for
many more potentials. Some solutions can also be obtained for arbitrary k for quasi-exactly
solvable (QES) potentials [18] in the sense that the first few solutions (up to a given principal
quantum number) can be determined exactly then. It has to be noted that in principle, (2)
does not restrict k to real values. This is because (7) can be considered a PT -symmetric
Schrödinger equation in itself, where K(ϕ) and k plays the role of the potential and the energy
eigenvalue, and the latter one can be complex too in the case of the spontaneous breakdown
of PT symmetry. k then does not appear in the potential (8) itself, only in the term equivalent
with the centrifugal term of the Hermitian problems. If k is complex, then (10) has to be
solved formally for complex angular momenta. In this case the energy eigenvalues E can also
become complex, in principle, corresponding to the spontaneous breakdown of PT symmetry.

It has to be noted that appropriate boundary conditions have to be applied to both the
radial and the angular wavefunctions. In the former case the situation is similar to the
standard Hermitian setting, while in the latter case the conditions τ(ϕ) = τ(ϕ + 2π) and
τ ′(ϕ) = τ ′(ϕ + 2π) apply. These are formally similar to the boundary conditions of
2π -periodic problems, so it is worthwhile to consider periodic potentials in (7).

Rather than searching for fully solvable examples of the radial and angular equations (10)
and (7), here we consider a specific choice for τ(ϕ) and use it to demonstrate some important
aspects of PT symmetry in two spatial dimensions. Let us consider

τ(ϕ) = cϕ exp(iD(ϕ)), D(ϕ) real, (11)
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Figure 1. The real (left panel) and imaginary (right panel) components of V (ρ, ϕ) in (15) displayed
in Cartesian coordinates, where p = 1 and the real central potential component is an harmonic
oscillator V0(ρ) = ω2ρ2 with ω = 20. Singularities are cut.

which corresponds to K(ϕ) = iD′′(ϕ) − (D′(ϕ))2 and k = 0. Then (8) turns into

V (ρ, ϕ) = V0(ρ) +
1

ρ2
[iD′′(ϕ) − (D′(ϕ))2], (12)

which is PT -symmetric if

D′′(ϕ + π) = −D′′(ϕ), D′(ϕ + π) = ±D′(ϕ) (13)

holds. Note that D(ϕ) = mϕ, i.e. searching for the solution τ(ϕ) in the simplest possible
form leads to a real V (ρ, ϕ), since in this case D′′ = 0. Actually, this choice corresponds to a
special case of PT symmetry: real central potentials.

Let us now consider the periodic solution

τ(ϕ) = cϕ exp[i sin(pϕ)], (14)

where p is integer. Then

V (ρ, ϕ) = V0(ρ) − p2

ρ2

[
1

2
+

1

2
cos(2pϕ) + i sin(pϕ)

]
, (15)

and PT symmetry requires p to be an odd integer. It is notable, that the periodicity of the real
and imaginary components of the angle-dependent potential term has to be different. Also
note that the coupling coefficient of these terms cannot be varied independently. Qualitatively
similar results are obtained if (14) is generalized by using the complex combination
D(ϕ) = sin(pϕ) + i sin(qϕ) in (11): then the real and imaginary components of K(ϕ) have
richer structure, but the difference in the periodicities remain.

The PT normalization constant in (14) can be expressed in terms of Bessel functions [19]
as cϕ = [2πJ0(2)]−1/2, irrespective of p. Then τ(ϕ) has the transformation property

PT τ(ϕ) = τ(ϕ). (16)

The solutions of the radial Schrödinger equation (10) do not depend on p in this case, so
due to k = 0 the radial Schrödinger equation has to be solved with zero angular momentum
in the Hermitian setting.

Figure 1 shows (15) where V0(ρ) is an harmonic oscillator. It is seen that the real
component has dual well structure, while the singularities of the imaginary component have
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Figure 2. The real (left panel) and imaginary (right panel) components of wavefunctions
corresponding to the potential in figure 1. The wavefunctions belonging to n = 0 with E0 = ω = 20
and n = 1 with E1 = 3ω = 60 are presented in the first and the second row, respectively. Note
the length scale different from that in figure 1.

opposite sign. This latter finding is similar to one-dimensional PT -symmetric potentials,
which are also characterized by a fine balance of absorptive and emissive imaginary potential
terms. The corresponding wavefunctions are displayed in figure 2 for principal quantum
number n = 0 and 1. The structure of the wavefunctions reflect PT symmetry, as in (16).
The difference in the radial structure is also seen.

In a more general and complete approach K(ϕ) and k can be chosen a PT -symmetric
potential and its energy eigenvalue, considered together with periodic boundary conditions.
Possible candidates could be the periodic ones from the list of shape-invariant PT -symmetric
potentials [20], such as the Scarf I potential [21], PT -symmetric Lamé type potentials [9], or
periodic potentials constructed from delta [8, 10] or step functions [15].

2.2. The case of d = 3

The Schrödinger equation is now

1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2
+

1

r2
cot(θ)

∂ψ

∂θ
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
− V (r, θ, ϕ)ψ + Eψ = 0. (17)
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With the substitution ψ ≡ ψ(r, θ, ϕ)

ψ(r, θ, ϕ) = r−1φ(r)χ(θ)τ (ϕ) (18)

the equation

φ′′χτ +
1

r2
(χ ′′ + cot(θ)χ ′) +

1

r2 sin2 θ
φχτ ′′ − (V (r, θ, ϕ) − E)φχτ = 0 (19)

is obtained. Following the procedure applied to the d = 2 case, next we eliminate the
derivatives of χ(θ) and τ(ϕ) by assuming that these functions satisfy some ordinary second-
order differential equation. In particular, besides prescribing (7) for τ(ϕ), we assume that
χ(θ) satisfies

χ ′′ + cot(θ)χ ′ = (Q(θ) − q)χ. (20)

This equation is known to be solvable for

Q(θ) = µ2 sin−2(θ), q = ν(ν + 1), (21)

when the solutions are given by the associated Legendre functions P µ
ν (cos(θ)) [19]. It can

be shown that PT -normalization of these functions is possible if the µ and ν parameters are
non-negative integers such that ν = n,µ = m � n. Then

χnm(θ) = in+m

[(
n +

1

2

)
(n − m)!

(n + m)!

]1/2

P m
n (cos(θ)) (22)

transforms under PT as PT χnm(θ) = χnm(θ), and its PT -norm is indefinite

〈χnm|P|χnm〉 = (−1)n+m. (23)

With the prescriptions (7), (20) and (21) a radial Schrödinger equation

−φ′′ +

[
V0(r) +

n(n + 1)

r2

]
φ − Eφ = 0 (24)

is obtained for φ(r), where the central potential V0(r) is related to V (r, θ, ϕ) as

V (r, θ, ϕ) = V0(r) +
1

r2 sin2(θ)
(K(ϕ) − k + m2). (25)

Note that in the case of real central potentials the second term vanishes, as K(ϕ) = 0 and
k = m2 holds then, and the whole procedure reduces to separating the angular variables using
spherical harmonics. The radial Schrödinger equation (24) can again be solved exactly for
any n in the few standard cases discussed in the previous subsection.

There is an important difference with respect to the two-dimensional case. The PT
symmetry of (25) requires not only the reality of V0(r) and the PT symmetry of K(ϕ) as in
(9), but also the reality of k, which appears explicitly in the expression of the three-dimensional
potential. Since n is also real, the radial Schrödinger equation (24) is that of a Hermitian
problem, so its energy eigenvalues might be restricted to real values. Since the E are also
the energy eigenvalues of the PT -symmetric system, it appears that unlike the 2-dimensional
case, the spontaneous breakdown of PT symmetry cannot occur for 3-dimensional potentials
derived in the present framework.

In order to generate solvable potentials in 3 dimensions, the same ϕ-dependent wave
equations can be applied as in 2 dimensions. Using (14) corresponds to a special generalization
of the spherical harmonics.



Fast Track Communication F279

3. Summary and conclusions

We generalized the formalism of PT -symmetric quantum mechanics to quantum potentials
defined in terms of polar coordinates in two and three spatial dimenensions. We searched for
potential problems that can be solved exactly by means of the separation of the variables. For
this the angular dependence of the potential terms had to be tailored to the structure of the
kinetic term expressed in terms of polar coordinates.

The PT symmetry condition had different effect on the radial and angular components of
the wavefunction. The differential equation describing the radial component turned out to be
essentially the same as the radial Schrödinger equation obtained for conventional (Hermitian)
centrally symmetric quantum potentials, while the angular variables were found to play an
essential role in introducing the imaginary potential component. In this respect the wave
equation in the ϕ variable had a special role in both 2 and 3 dimensions, as it turned out that
due to the joint effect of the boundary conditions and PT symmetry it has to be chosen as a
Schrödinger equation defined with a 2π -periodic PT -symmetric potential on the ϕ ∈ [0, 2π ]
domain. It also turned out that in 3 dimensions the θ -dependent component of the wavefunction
is best described by associated Legendre functions P m

n (cos(θ)), which also appear in the case
of spherically symmetric conventional potentials. These functions are PT -symmetric, and
their pseudo-norm exhibits an oscillatory behaviour (−1)n+m.

As an example we considered a simple exponential form of a periodic function to
describe the ϕ-dependent component of the wave function. Although the corresponding wave
equation is solvable exactly only for zero eigenvalue, the resulting solution illustrated several
important aspects of PT symmetry in higher dimensions. One of these is the difference in the
ϕ-periodicity in the real and imaginary potential components.

In order to obtain a more complete picture, it would be worthwhile to employ exactly
solvable 2π -periodic PT -symmetric potentials to account for the ϕ-dependence of the
potential in both 2 and 3 dimensions. With this the complete energy spectrum could be
generated, furthermore, the spontaneous breakdown of PT symmetry could also be induced,
although only in 2 dimensions. Degeneracy patterns and possible underlying symmetries
could also be investigated. The presence or absence of quasi-parity in higher dimensional
problems is another important question to be settled.

Further possible generalizations of these results are considering solvable problems in
even higher dimensions, and searching for alternative solutions of the angular wave equations.
Extending these studies to pseudo-Hermitian systems in d > 1 also seems worthwhile.
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